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are localized at the resolution of the smallest spatial scale without having
to identify maxima in brightness gradients, while noise is removed with
the efficiency of the largest scale. There are no problems of local minima,
and for any given set of parameters there is a unique solution. Images
reconstructed from the brightnesses adjacent to the marked edges are very
similar visually to the originals. Significant bandwidth compression can
thus be achieved without noticeably compromising image quality.



1. Introduction

In a real-time system, it is desirable to find edges, or sharp changes in the image
brightness function, quickly and accurately. Speed is necessary to save time which
can be better spent on more computationally intensive processes, such as feature
matching, which use the edges. Accuracy is needed to supply these processes with
reliable input. Accurate edge detection means being able to selectively ignore gradi-
ents in the brightness function caused by high spatial-frequency features attributable
to noise, while marking those caused by high frequency features such as corners and
junctions. It also requires that the edges be well localized to the contours of features
in the image which generate them. Noise can be removed by applying a linear lowpass
smoothing filter. However, this has the effect of attenuating all high frequency com-
ponents indiscriminately and introducing uncertainty in edge locations. on-linear
methods, such as median filtering, which preserve important edges and re ove noise
have been in existence for some time. These methods generally require mo e compu-
tation than linear filtering, however, and cannot be implemented by con lution. Of
particular interest to designers of real-time systems are methods w ch can be built
in silicon. One recently developed technique designed in analog VLSI is the resistive
fuse network invented by Harris [8] based on the weak membrane model of Blake and
Zisserman [3]. In this paper we propose another computational model which can also
be implemented in analog VLSI and which overcomes some of the disadvantages of
the weak membrane model.

The multi-scale veto, or MSV, model is similar to the weak membrane in that it
assumes an image can be approximated by a collection of piecewise smooth functions.
Edges are 'break points', i.e., locations where the brightness function is not required
to be smooth. The MSV model differs from the weak membrane, however, in two
respects. It does not reconstruct the image from all of the data, but only from the
brightness values of pixels on either side of the edges. Second, the networks used for
edge detection and image reconstruction are physically distinct. As a result, problems
associated with the non-convexity of the weak membrane are avoided.

The MSV model derives its name from the method it uses for detecting edges. GUM
Edges are defined as loci of sharp changes in the image brightness function which are a NiA
significant over a range of spatial scales. An important aspect of the MSV model is ,,no"
that edges do not necessarily correspond to local maxima in the magnitude of the ,rteat I

gradient. It therefore responds not only to step changes in brightness, but also to
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strongly shaded surfaces which do not always give rise to well defined maxima in
the gradient. On a discrete two-dimensional array edges occur between two pixels
(nodes). The spatial scale is determined by the space constant of the smoothing
network to which voltage sources proportional to the sampled brightness values at
each pixel are connected. Differences are computed between the smoothed voltages
at neighboring nodes of the network and compared to a threshold which is also a
function of scale. In applying the multi-scale veto rule, two or more scales are used,
and all must agree on the presence of a significant difference between two nodes before
an edge is marked. If at any scale the difference between the smoothed brightnesses is
below threshold, the edge is vetoed. As will be discussed in Section 4.1, this method
allows edges to be localized at the resolution of the smallest scale, while noise is
removed with the efficiency of the largest scale.

Two points, which are discussed later in detail, are significant to note about the
MSV edge detection network:

"* It does not require computation of second differences, and

"* All of the difference operations and threshold tests at different scales can be
performed on the same physical network.

Both points represent a considerable savings in circuitry, a crucial consideration
if the network is to be designed to work with large image arrays.

The second piece of the MSV model is the reconstruction network. While this
circuit performs nothing more complicated than interpolation from the brightness
values next to the marked edges, it is significant that the images reconstructed in
this manner are very similar visually to the originals. Since only a fraction of the
original data points are needed for reconstruction-typically from 15-45% of the
image, depending on the amount of detail in the scene-this means that we can
save storage and transmission bandwidth by only encoding these values. Combined
with existing compression methods such as run-length and Huffman coding, the total

A savings may be significant.

This paper is organized as follows: In the next section we review related work
in edge detection, multi-scale methods and image reconstruction. In Section 3 we

describe the circuit models of the edge detection and reconstruction networks, and in
Section 4 we discuss performance issues and show results from computer simulations
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on some test images. In the last section we compare the MSV model to the weak
membrane and characterize the differences between the computations they perform.

2. Related Work

2.1. Edge detection and the use of multiple scales

As explained by Torre and Poggio [22], the numerical differentiation of images is
an ill-posed problem that must be regularized in order to obtain a stable solution.
The regularization function in this case takes the form of a smoothing filter which
must be applied before differentiation. In most work in computer vision, edges are
defined to be the loci of maxima in the magnitude of the smoothed brightness gradient
and can be detected from zero-crossings in the second derivative. This is the basis on
which many edge and line detectors, such as the Marr-Hildreth Laplacian-of-Gaussian
(LOG) filter [17], the Canny edge detector [4], and the Binford-Horn line finder [91,
have been designed.

As stated in the introduction, isotropic smoothing filters such as the Gaussian
have the disadvantage that they smooth away important features as well as noise.
Smoothing can displace points of maximum gradient, such as around the cusp of a
brightness 'corner', or remove them altogether. Many efforts have therefore focused
on developing more selective, edge-preserving smoothing methods. One possibility
is non-linear filtering. The median filter [7], for example, has often been used in
image processing because it is particularly effective in removing impulse, or 'salt-
and-pepper', noise.

Another approach put forward in recent years is the idea of edge detection, or
more precisely image segmentation, as a problem in minimizing energy functionals.
The first proposal of this nature was the Markov Random Field (MRF) model of
Geman and Geman [6]. In an MRF the minimum energy state is the maximum a
posteriori (MAP) estimate of the energies at each node of a discrete lattice. The MAP
estimate corresponds to a given configuration of neighborhoods of interaction. 'Line
processes' are introduced on the lattice to inhibit interaction between nodes which
have significantly different prior energies, thereby maintaining these differences in
the final solution. Mumford and Shah [18] studied the energy minimization problem
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reformulated in terms of deterministic functionals to be minimized by a variational
approach. Specifically, they proposed finding optimal approximations of a general
function d(x, y), representing the data, by differentiable functions u(x, y) that are
minimizers of

E(u, r) = u 21JJR - d)2 dxd! + J IVU12 dxds + vy~n (1)

where r is a closed set of singular points, in effect the edges, at which u is allowed
to be discontinuous. Blake and Zisserman [3] referred to (1) as the 'weak membrane'
model, since E(u, r) resembles the potential energy function of an elastic membrane
which is allowed to break in some places in order to achieve a lower energy state.
They derived a continuation method, which they referred to as the Graduated Non-
Convexity (GNC) algorithm, to minimize (1) iteratively.

The weak membrane model was one of the first methods to be implemented in
analog VLSI. Digital circuits for performing Gaussian convolution and edge detection
began appearing in the early 80's [1,11]. The possibility of performing segmentation
and smoothing with analog circuitry, however, did not seem practical until the prob-
lem had been posed in terms of a physical model. Harris [81 invented the first CMOS
resistive fuse circuit for minimizing (1) on a discrete grid. A resistive fuse is a two-
terminal non-linear element which behaves as a linear resistor over a certain voltage
range, but transforms into an open circuit if the voltage across its terminals becomes
too large.

The issue of scale arises in edge detection because of the tradeoff between accurate
localization of features and sensitivity to noise. Since important features generally
occur over a range of spatial scales, many methods have been based on the use of
information at multiple scales. Marr and Hildreth first proposed finding edges from
the coincident zero-crossings of different sized LOG filters. Witken [231 introduced
the notion of scale-space filtering, in which the zero-crossings of the LOG are tracked
as they move with scale changes. In the weak membrane model, there are two pa-
rameters to specify which, in a sense, determine the scale: p, which controls the
smoothness of the fitted solution u(x, y), and v, which determines the penalty as-
signed to the discontinuities. Richardson [21) developed a scale-independent iterative
algorithm for minimizing an energy formulation similar to (1). In each iteration,
the variational problem is solved for some input image, d(z, y), and some value of p
and v. The result is that feature boundaries apparent at the coarsest scale defined

4



by the initial values of p and v are localized with the resolution of the finest scale
used in the last iteration. Small features, however, are not detected because they do
not generate discontinuities at the coarse scale and hence are smoothed away. The
principle applied in Richardson's algorithm is very similar to that of the multi-scale
veto rule. The MSV model, however, does not involve solving a variational problem.

The MSV model differs from other edge detection methods in that it does not
define edges as points of maximum gradient, and hence does not require second
derivative operators. By defining edges as the loci of significant abrupt changes in the
image brightness function, it detects edges generated by features which generate step
changes in brightness, as well as those generated by features such as shaded surfaces
that do not necessarily give rise to maxima in the gradient. The MSV model is similar
to the weak membrane in that it assumes the image can be well-approximated by a
set of piecewise smooth functions whose boundaries are the edges. Multiple scales
are used in order to ensure that the differences measured between neighboring pixels
are due to spatially significant features and not to noise. As will be discussed further
in Section 4.1, the method allows good localization of features because, unlike the
points of maximum gradient, points where the brightness differences are significant
will not move with smoothing.

The edges produced by the MSV model are not as 'refined' as those produced by
more complex methods such as Canny's edge detector [41 or Richard's CARTOON
algorithm [201. This is in part due to the way edges are defined, and in part due
to the need to make the circuitry as simple as possible in order to minimize silicon
area. There is no room for contour filling-in or texture edge removal. Our contention
is that the edges produced by the MSV network are nonetheless functionally useful.
We will demonstrate their usefulness in conjunction with the reconstruction network,
and we believe that they will prove to be sufficient as well for other early vision tasks
such as primitive feature matching.

2.2. Image Reconstruction

In the weak membrane, the functions u(x,y) which minimize (1) given the dis-
continuity set, F, result from smoothing all the data with a filter of scale 1/p, with
the restriction that smoothing is inhibited across edges. In the MSV model the re-
constructed image is generated by interpolation from the brightness values adjacent
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to the marked edges, and hence uses only a fraction of the original data. Before
continuing, we mention briefly some other methods for reconstructing images from
sparse data points.

A significant amount of work in communications theory has been devoted to the
problem of reconstructing signals from their zero-crossings. An often cited theo-
rem by Logan [15] is that almost all bandpass one-dimensional signals of bandwidth
less than one octave are uniquely specified by their zero-crossings. Curtis and Op-
penheim [5] extended Logan's theorem to two dimensions and showed that any real
two-dimensional doubly-periodic bandlimited function f(x, y) is uniquely specified to
within a constant scale factor by its zero-crossings, or its crossings of an arbitrary
threshold. The number of zero-crossings needed to specify f(x, y) may be large, how-
ever, and their method is not likely to be practical for reconstructing large images
with significant high frequency components, since it requires precise knowledge of the
zero- or threshold-crossing locations.

One well-known example of an instance where an image can be reconstructed from
sparse data is the case of Mondrian patches, first used by Land and McCann [131 to
demonstrate their theory of the computation of lightness. The human visual system is
very good at determining the reflectance of an object, under a variety of illuminating
conditions. Land and McCann showed that one could recover, to an arbitrary scale
factor, the reflectances of Mondrian patches by measuring the ratio of brightnesses at
each step change on a closed path around the image. Horn [101 later showed how the
same computation could be performed on a parallel network by first computing and
then thresholding the Laplacian of the logarithm of brightness. More recently, Blake
12) suggested a modification to Horn's algorithm by having the threshold operation
depend on the magnitude of the gradient rather than the Laplacian of the logarithm
of brightness. In a sense, the MSV model can be considered as an extension of
these algorithms; although it is the original brightness function, and not surface
reflectance which is being recovered. Algorithms for the computation of lightness
first showed that under certain circumstances it is possible to regenerate an image
from the differences in (log) brightness across patch boundaries, where there is a step
change in brightness. In the MSV model, we show that an image can be recovered
from the brightnesses adjacent to edges under more general conditions.
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3. Circuit Models

In this section we describe the circuit models for the edge detection and recon-
struction networks. As the actual circuit is currently in the design phase, implemen-
tation issues will not be discussed in this paper.

3.1. Edge Detection

The fundamental principle of this network is the multi-scale veto rule for detecting
significant changes in the image brightness function. This rule states that an edge
exists between neighboring pixels if and only if the change in brightness between
them is significant over a range of spatial scales. The scales are determined by the
space constants of isotropic smoothing filters applied to the entire image. Differences
are computed between the smoothed values at neighboring pixels and compared to
a threshold which is a function of the scale. If the magnitude of the difference is
greater than threshold at each scale, an edge is marked. If at any of the scales the
difference is below threshold, however, the edge is vetoed.

It is not necessary to build a multi-dimensional network in order to implement
the multi-scale veto rule. By including time as a dimension, a single smoothing
network with controllable spatial scale, such as the resistive grid with variable vertical
resistances shown in Figure 1, can be used. The combined result of the threshold
tests at each scale is encoded by a capacitor whose charge represents the AND of the
different tests. The network shown in Figure l(a) is one-dimensional; however, the
extension to two dimensions is straightforward. By equating the current through the
vertical resistors connected to the node voltage sources di, which are proportional to
the sampled brightnesses, to the sum of the currents leaving the node through the
horizontal resistors, one easily arrives at the resistive grid equation:

U, - R (U - u,) = di (2)

where the subscript k is an index over the nearest neighbors of node i.

The continuous 2-d approximation to this circuit is the diffusion equation
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u - A2V2u = d (3)

with

X= (4)

which is the characteristic length over which an point source input will be smoothed.

One operational cycle of the MSV network corresponds to sensing an image,
performing the threshold tests at each scale, and offloading the results. The cycle
is divided into time intervals with operations controlled by external circuitry. It is
assumed that the number of threshold tests is small (.-5-10) and that the length of
time they require is short compared to the image acquisition time so that operation
can proceed at frame rate. In the first interval, corresponding to image acquisition,
during which the voltage sources di are generated, a control signal, P0, connected to
the edge precharge circuit goes high, pre-charging all of the capacitors, Ce. At the
end of the sampling period, P0 goes low and stays low for the remainder of the cycle.
In the following intervals, R is changed to set the value of the space constant. The
absolute value of the differences between neighboring node voltages are compared to
a threshold, and the edge capacitors at sites where the tests fail are discharged. The
final phase of the cycle corresponds to moving the edge charges and brightness values
neighboring the edge locations onto another circuit where further processing takes
place. The smallest scale used in the computation may correspond to & = 0, i.e.,
no smoothing at all, and the largest one may correspond to A > 1. The values used
are externally set parameters.

3.2. The Reconstruction Network

The reconstruction network, as shown in 1-D in Figure 2, regenerates the image by
interpolation from the brightness values on either side of the marked edges. Voltage
sources proportional to the original brightnesses di are switched to the resistive grid
according to whether or not the node is adjacent to an edge. The control signal
which closes the switch is logically equivalent to the OR of the states of all the edge
capacitors adjacent to the node. As seen from equations (2) and (3) with Rh = 00
(A = oo), the distribution of voltages on the resistive network at non-edge nodes
solve a discrete form of Laplace's equation. Along the outer border we impose the
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EPC

u i ui+l

Rh Rh Rh

R RV

di dij+ l

(a) I-d multi-scale veto edge detection network. di and d,+l are voltage
sources proportional to the sampled brightnesses. The box labeled EPC is
the edge precharge circuit shown below.

VDD

li T C
u i U-' i i+1

(b) Edge precharge circuit. Po is a pulsed clock signal which goes high during
the image acquisition period. The comparator output is high if I u - u+. I I <
r, where r is a globally specified threshold. The capacitor Ce encodes the
edge location.

Figure 1: Components of the edge detection network
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Yi Yi+1

Rh Rh Rh

di di+1

Figure 2: The 1-D reconstruction network. di and di+ 1 are voltage sources proportional
to the original brightnesses; yi, yii+1 are the reconstructed brightnesses. Vei and Vei+i
control switches connecting the sources to the grid. Each is logically equivalent to the OR
of the capacitor states between the node and its neighbors.

condition that the current flowing out of the grid, the normal derivative of the voltage,

is zero. It is easy to see that the solution to the reconstruction network is therefore

unique and well-defined since there are exactly as many equations as unknown node

voltages.

It should be emphasized that several implementational issues are left open in

presenting this conceptual picture of the reconstruction network. Clearly, the manner

of setting the switches and charging the voltage sources in the reconstruction network

is a major design problem whose solution will depend on the apolication in which the

network is used. In this paper, however, we would like to focus on what the network

does, rather than on how it should be built, and demonstrate that the results it

produces are in fact worth the design effort.

The idea that the image can be reconstructed by solving Laplace's equation on

a resistive grid subject t3 the given boundary conditions is based on the assumption

that we can model an image as a collection of piecewise harmonic functions. If this

assumption held exactly, only the brightness values bordering edges, where the func-

tions are not required to be harmonic, would need to be specified in order to recover

the image completely. A real image is of course always corrupted by noise and will

never be exactly harmonic except coincidentally. What we seek to reconstruct is a

visually acceptable approximation. For the method to work well, the edges, which de-

termine where the switches are closed in the reconstruction network, must accurately

represent locations where the image brightness function deviates significantly from

harmonicity. This is another reason for not defining edges as local maxima in the
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magnitude of the gradient, since the brightness function may deviate from harmonic-
ity without exhibiting a maximum in its gradient. This happens often at junctions
between the projections of different objects in the scene, as well as in many other
instances. Marking only the points of maximum gradient would miss these locations,
with the result that the network would force an interpolated solution between nodes
which should not otherwise interact. The reconstructed image in this case will not
be a visually acceptable approximation to the original.

4. Performance issues: Theory and Results

4.1. Effect of the multi-s-ale veto rule

One way to understand the effect of the veto operation is to consider how it
relates to the Fourier spectrum of energies contained in an edge. w'ince the oper-
ations are performed on a discrete network, it is appropriate, and simpler, to use
discrete Fourier transforms. Let x(n], with Fourier transform X(ejw), denote a one-
dimensional sequence of sampled brightnesses which has an abrupt change in value
between n = 0 and n = -1. We will assume that the dimension of the network is
> I so that we can approximate frequency, w, by a continuous variable from [-7r, ir].
Let y[n] = x(n] - x[n - 1] denote the difference sequence, and hk[nl denote the con-
volution kernel of a lowpass filter Hk(ej-) of support size k. From [191 the value of
y[01 is equal to

y[01 = 1 L,> - eJ)X(eJw)dw (5)

and the value of the smoothed difference yk(n] at n = 0 is

4[01] = hk[01 * y[01 = 1 r Hk(eJ&)(1 - e- .X(elw)dw (6)

Equations (5) and (6) are valid, even though we are working with two-dimensional
images, since we are taking differences in only one direction. We can integrate the 2-D
Fourier transform over the orthogonal frequency and redefine variables accordingly.
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We are interested in determining under what conditions an edge will be detected

at y[O], given the input sequence x[n] and the smoothing filter hk(n], when the veto
rule is applied to the difference sequences yin] and yk[n]. We will examine two special
cases: one where the input is a step, and one where it is an impulse of the same height
as the step. These cases correspond to ideal 1-D profiles of a step edge and of an
isolated noise spike. We want to show how the multi-scale veto rule can discriminate
between these cases by marking the step edge at the point where the input changes
abruptly and rejecting the impulse as noise.

Let -r0 be the threshold used for the unsmoothed differences y[n], and let rk be
the threshold used for the smoothed difference sequence yk[n]. Suppose z[n] = Au[n]
where A is a positive constant and u[n) is the unit step. Then y[n] = A6[n], where

6[n] is the unit impulse; y[01 = A and yk[0] = Ahk[0]. If r0 < A and rk < Ahk[0], the
edge will be marked at n = 0. At other values of n 4 0, yk[n] = Ahk[n], which is not
0 in general. It is even possible that for some n, JAhk[n]I > 'rk, but since yfn] = 0 for
all n 0 0, the unsmoothed differences will veto the marking of an edge everywhere
except at n = 0. Clearly, this is the desired result.

Now suppose that x[n] = AeS[n] and y[n] = A(1[n1 - b[n - 1]) so that y[01 = A
and yk(0] = A(hk(0] - hk(1]). The difference at n = 0 will pass the threshold test for
the unsmoothed differences if ro < A, but will only be marked as an edge if

A> rk (7)
hk[0] - h[1]

For a discrete smoothing filter, 1 > hk[0] - hk[1] > 0 always, and the value of
hk[0] - hk(l] will be smaller as k gets larger. Hence, more contrast is needed to mark
an impulse than a step. This also is a desired result.

For more general inputs, equations (5) and (6) can be interpreted as meaning that
an edge will be marked by the multi-scale veto rule if and only if the total energy
within the passbands of each of the applied filters is significant. Isolated impulse
noise, whose difference signal does not have significant energy in the low frequency
end of the spectrum, can be easily removed. If, instead of an impulse, the input signal
is an extended pulse-as would be the case for the ideal I-D profile of a line-the
amount of contrast needed to mark the rising and falling edges of the pulse will also
depend on the the scale and threshold of the largest filter, but it will rapidly decrease
as the width of the pulse increases. We use this fact, as discussed below; to adjust
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the selectivity of the edge detection network for small scale features.

It is important to note that while the scale and threshold of the largest filter
determines the effe-tiveness with which noise and small features are removed, the
smallest filter determines the accuracy with which edges are localized because it de-
termines the extent over which a change in brightness will be smeared by smoothing.
Beyond this extent, the small scale differences will be insignificant and will veto any
differences at larger scales.

4.2. Choosing thresholds and scales

It might seem that the number of free parameters-the different thresholds and
scale sizes-that need to be specified in order to apply the multi-scale veto rule would
make the method impractical or even arbitrary. However, there are simple ways to
choose thresholds and scales based on the types of features which one wants to retain.
From the resistive grid and diffusion equations, (2) and (3), it can be seen that the
impulse response functions of the smoothing filters which can be implemented on the
network are approximately decaying exponentials or Bessel functions. For certain
values of X• and Rh these can be well approximated by even-ordered binomial filters.
The 1-D binomial filter of order k is given by

bk[(] = I ( ) b i - n] (8)
2kFs=O 2

For the sake of simplicity we will use bk[n], with k even, to approximate the
impulse response of the grid since the coefficients of the binomial filter are easily
computed. Suppose we only want to retain step edges and remove thin lines or
ridges. This can be arranged using only two scales: unsmoothed, k = 0, so that
the step will be well-localized, and a second scale with large k so that lines will be
strongly attenuated.

As a specific example, suppose -ro = 10 and k = 16. A step of height 10 and
extent > 16 will, after smoothing, have a height of 10 x 616[01 = 1.964. Let this be
the value of r16 . From (7), a 1-pixel line (an impulse) will pass the veto only if it has
magnitude
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Figure 3: Lab scene-original image.

A> 1.964 90 (9)
b,6 [0] - bj6[1]

For wider hues, it can easily be checked that a 2-pixel line, x[nl = A(u[n]-u[n-21)

will need A > 26. A 3-pixel line, x[n] = A(utn] - u[n - 31) will need A > 15, and

so on. We can increase the selectivity of the veto operation by increasing ro or k.

Conversely, we can make the veto less selective for narrow lines by decreasing T16 .

For instance, if rle = 1.4 a 1-pixel line would still need a large magnitude (> 64) to

pass, but a 2-pixel line would pass with A = 19.

4.3. Simulation results

Simulated results of the edge detection and reconstruction networks are shown for

two test images in Figures 3-10. The first set of results is for the 240x320 picture

of a cluttered lab shown in Figure 3. The second set is for the 256x256 picture of

David shown in Figure 7. Brightness values in the images are quantized from 0-2535.

In these simulations we approximated the smoothing function of the edge detection
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(a) Binary edge map

(b) Reconstructed image

Figure 4: Binary edge map and reconstruction of lab scene. Thresholds and scale set for
attenuating thin lines, ro = 20, k = 14. Number of data points = 30156 (39% of image).
RMS difference between original and reconstruction = 10.1 gray levels.
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(a) Binary edge map

(b) Reconstructed image

Figure 6: Binary edge map and reconstruction of lab scene. Smaller second scale used
to preserve some thin hines, r0 = 20, k = 10, Number of data points = 32700 (42.6% of
image). RMS difference between original and reconstruction = 7.5 gray levels.
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Figure 6: Top: original image. Middle: reconstruction with k 14. Bottom: reconstruc-

tion with k = 10.
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network by even ordered binomial filters since these are good approximations to the
network point spread function and are easy to generate. We will use the notation
b, to refer to the 2-D filter generated by the convolution of a horizontally- and a
vertically-oriented 1-D filter of order k as given by (8).

In the first test we show the effect of changing the scales on detecting small
features such as thin lines. Figures 4(a) and (b) are respectively the binary edge
map and reconstruction from using a relatively high threshold, r0 = 20, and a large
second scale, k = 14. The dark points in the binary map indicate where switches are
closed in the reconstruction network. They are the locations of image pixels which
are adjacent to an edge and thus always occur in pairs. The image contains a large
amount of detail, resulting in many edges being marked. Notice, however, some of
the smaller scale features such as some of the cables hanging from the scope and
the workbench. Those with relatively low contrast are not picked up by the edge
detector, and hence, except for a few points which hint at their existence, do not
show up in the reconstructed image. In the second test, Figures 5(a) and (b), the
same threshold r0 was used for the unsmoothed data, but a smaller filter, k = 10,
was used as the second scale. In Figure 6 the two reconstructed images are shown
together with the original in order to facilitate comparison. Note how some, though
not all, of the cables reappear in the reconstructed image.

In the lab scene there is a lot of clutter, but most of the objects in the image-
boxes, tables, workstations-are close to having planar or approximately harmonic
surfaces. It is not too surprising that the reconstructed images are very similar to
the original. An example of a different type of image is Figure 7 which has little
clutter and only one major object in the scene, namely a face, which is a very non-
planar surface. It is interesting to examine how such an image can be reconstructed
from piecewise harmonic functions and, more importantly, how many data points
are needed to give a recognizable result. In generating the images in Figures 8-10
the same scales, k = 0 and k = 10 were used, while the threshold r0 was varied.
In the face, most of the information on shape is contained in the variation of the
brightness gradient. By changing r0 , we change the number of edges which are
marked, and therefore change the amount of variation in the brightness gradient of
the reconstructed image.

The results are shown in Figures 8-10 where thresholds r0 of 9, 12, and 15 were
used. The three reconstructed images are shown together with the original in Fig-
ure 11. As ro increases fewer edges are marked and the reconstructed image appears
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Figure 7: David-original image.

correspondingly flatter. Even in the last example, however, with only 12% of the
original brightness values used for interpolation, the face is still recognizable. Fig-
ure 10 could be an acceptable reconstruction if we are willing to trade the loss in
apparent facial shape with the savings in the number of data points that need to be
specified.

Although we have only demonstrated it here for the face image, it is true in general
that, even though the subjective visual quality of the reconstructed image degrades
as r" increases, the result remains recognizable over a wide range of thresholds. For
the lab scene, which contains more contrast than the face, the range is larger, but
the same phenomenon is observed. This is an important practical observation since
it implies that the choice of a specific threshold value is not crucial to the outcome.
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(a) Binary edge map

(b) Reconstructed image

Figure 8: Binary edge map and reconstruction of David with low threshold, r0  9, to
pick up more detail. Number of data points =13368 (20.4% of image). RMS difference
between original and reconstruction = 7.1 gray levels.
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(a) Binary edge map

(b) Reconstructei" image

Figure 9: Binary edge map and reconstruction of David with intermediate threshold,
r0 = 12, to eliminate some edges. Number of data points = 10190 (15.5% of image). RMS
difference between original and reconstruction = 9.1 gray levels.
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(a) Binary edge map

(b) Reconstructed image

Figure 10: Binary edge map and reconstruction of David with ro = 15. The high threshold
eliminates much of the detail on face. Number of data points = 8031 (12% of image). RMS
difference between original and reconstruction = 11.5 gray levels.
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Figure 11: Top left: original image. Top right: reconstruction with ro =9. Bottom left

to right: reconstructions with To = 12 and i,, 15.
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Figure 12: Resistive fuse network for solving discrete variational problem of equation (11).
Horizontal elements behave as linear resistors for small voltages across their terminals, but
are open-circuits if the voltage difference is too large.

5. Comparison of the MSV Model to the Weak Membrane

Like the weak membrane, and other variational models, the MSV model segments
an image into a set of piecewise smooth functions by determining the points in the
image where the brightness function departs significantly from smoothness. Clearly,
it is desirable to find the minimum number of such points which will result in a good
approximation of the image. The weak membrane model formulates these goals as
an optimization problem whose solution yields both the points on the discontinuity
set and the piecewise smooth functions which approximate the image.

The weak membrane has some problems associated with its formulation, however,
which the MSV model is able to avoid. One is that the energy function, equation (1)
which is repeated below

E(u, r) = p 2 JJ f - d)2 dxdy + JJ IVU12 ddy + z#I1' (10)

is non-convex and cannot be solved by gradient descent methods. This problem,
which is well explained by Blake and Zisserman in [3], is intrinsic and arises because
of the penalty which must be paid for creating a discontinuity before the system can
reach a lower energy state. This problem does not occur in the MSV model because
there is no feedback between the reconstruction and edge detection networks.

Equation (10) can be discretized and modeled by a resistive network. In one-
dimension the discrete equation is
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1 N N-I N-iJ(ul) = -r-(uz -di) 2_ + (u,- ui+) 2 (1-1i) + v llj (11)

where the {0-1}-valued variables, li, model the discontinuity set, r, of equation (10).
The equivalent circuit for (11) is shown in Figure 12 [16]. The horizontal elements
in this network are resistive fuses, which break if the voltage across their terminals
rises above a critical value, but otherwise behave as linear resistors. Several imple-
mentations of the 2-D version of the network in Figure 12, which differ principally in
their design of the resistive fuse elements, have been built in VLSI [8,14,24]. Circuit
implementations of the weak membrane cannot escape the non-convexity problem,
however, and some effort is required to nudge them to the optimal solution [16].

A second problem with the weak membrane is that the optimal piecewise smooth
functions u are determined from all of the data and not just the values adjacent to
a discontinuity. They are also strongly determined by the scale parameter p. The
resistive fuse network of Figure 12 and the multi-scale veto edge detection network
of Figure 1 appear similar, because both perform smoothing by a resistive grid.
Both the MSV model and the weak membrane reconstruct an brightness function
from the data, but with different boundary conditions. Returning to the continuous
formulation, if r is given in (10) then the functions u(x, y) which minimize E satisfy
the Euler equation

u*- 7V2u = d (12)

subject to the condition

n- Vu = 0 on r (13)

which, comparing (12) with the resistive grid equation (3), is the same as saying that
u is a smoothed version of d. In the MSV network we generate the piecewise smooth
reconstruction of the data by solving Laplace's equation subject to the boundary
condition u = d on 1r. This is equivalent to minimizing only the second term in (10),
or setting/s = 0.

Both methods can therefore be viewed as alternative ways of regularizing the
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brightness data with interpolating splines. The solution obtained by solving (12)
and (13), however, must tradeoff how effectively noise can be removed by smoothing
against how natural the resulting image will be. This problem can be understood by
considering the limiting cases: p -+ 0 and y -- oo.

As i --+ 0 equation (12) becomes

V 2 u : 0 (14)

The solution in this case is approximately harmonic, but due to the boundary
condition (13), it must approach a constant, since that is the only harmonic function
which has zero normal derivative everywhere on its boundary. In this case noise
within the regions between the discontinuities will be completely smoothed away,
but the resulting image will be a collection of patches of constant brightness and will
appear very cartoon-like.

At the other extreme, p --+ oo, we have

u-d 0 (15)

In this case, the output will appear more natural because it is approximately the
same as the input, but there is also very little smoothing.

The images reconstructed in the MSV model look more natural and are very
similar visually to the originals because there are fewer constraints to satisfy. The
functions only have to match the data where it is given and satisfy Laplace's equation
everywhere else. Furthermore, noise can be more effectively removed since any feature
which does not generate an edge is erased entirely from the reconstructed image and
not just smoothed into the background.

It should be noted that the weak membrane does have some features which are
not shared by the MSV model, for instance the hysteresis property, which gives an
existing edge the tendency to extend itself, just as a tear does in a real membrane.
Also, the weak membrane model can be formulated as a well-defined minimization
problem, so that one can speak of an optimal solution. We do not know of a way
to formulate the problem that the MSV model attempts to solve, namely finding
the minimal discontinuity set bounding piecewise harmonic functions which are good

26



approximations, in some sense, to the original image, as a variational problem. The
method used in the MSV model for finding edges is a heuristic, and is based on the
idea that the magnitude of the gradient for a harmonic surface which extends over
any significant area can be bounded over most of its extent by a small number, such
as the threshold used in the tests. This is seen from the fact that the functions f
which minimize

I Vf 12dxTdy (16)

over some domain D are solutions to V 2f = 0, within the domain [121. By marking
the points where the change in brightness is above some threshold and is significant
over a range of spatial scales, we determine the locations where the underlying bright-
ness function is most likely to depart from harmonicity, and where interpolation from
neighboring values is least likely to be a good approximation to the data. In terms
of finding the minimal discontinuity set, it is easy to show that this heuristic is not
optimal. For instance, a steeply inclined plane will give rise to a discontinuity at
every point on its slope, even though a plane is a harmonic function for which it
would suffice to specify its boundary points. In practice, however, such features can-
not occur very often because the spatial extent of a steeply sloped surface is limited
by the dynamic range of the image. It can only rise for a few pixels before it has to
level off. The philosophy of the MSV method is that it is better to accept a less than
optimal heuristic than to complicate the circuit design to deal with these cases.

6. Summary and Discussion

We have presented a model of a two-stage analog network for edge detection and
image reconstruction. Edges are detected in the first stage using the multi-scale veto
rule, which states that an edge is significant only if it passes a threshold test at each
of a set of different spatial scales. The image is reconstructed in the second stage
from the brightness values adjacent to the edges. The two-stage design offers several
advantages for both performance and applications. Because there is no feedback
between the stages, there is also no problem of stability or local stationarity. Also
since the networks are physically distinct, they do not have to be physically close
to operate properly. This increases the flexibility with which the system may be
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designed, as well as the types of applications for which it may be used.

The multi-scale veto rule allows edges to be localized at the resolution of the
smallest spatial scale without b ring to identify maxima in brightness gradients,
so that second differences do Lut need to be computed. At the same time noise
is removed with the efficiency of the largest scale used. The computations can be
performed on a single network with relatively little circuitry per pixel. The simplicity
of the circuit is an important feature of the model since it directly impacts on the
size of the image arrays with which it can work.

Images are reconstructed in the second stage from the brightness values adjacent
to edges. The reconstructed images are very similar visually to the originals and
could serve, for some applications, as acceptable replacements. Since the number of
data points which need to be specified for the reconstruction network ranges typically
from 15-45% of the number of pixels in the original image, depending on the amount
of detail in the scene, and since the edge detection and reconstruction networks are
physically distinct, this method offers possibilities for data compression. Combined
with existing methods such as run-length and Huffman coding, the total savings in
bandwidth may be significant.

This paper has presented the theory behind the MSV model, which is a piece
of ongoing research. Work is currently in progress on the design and fabrication
of circuits for the edge detection and reconstruction networks; the design of larger
systems for solving early vision tasks that incorporate the edge detection network; and
on the theoretical issues concerned with applying the model to image compression.
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